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Simplification of the Shock-Tube

Equation

J. Gorpon HanL* anp AnTHONY L. RussoT

Cornell Aeronautical Laboratory Inc., Buffalo, N. Y.

A useful simplification of the shock-tube equation
is pointed out for shock Mach numbers exceeding
about 3. For given driver gas specific heat ratio,
shock-tube performance can be expressed explicitly
for all initial conditions (including area change) by
a single curve. The two basic variables are the
shock strength normalized in terms of diaphragm
pressure ratio, and the diaphragm density ratio.
Universal performance curves are given in this form.
Application to tailored-interface conditions and
optimum performance of buffered tubes is
described.

HE ideal-gas shock-tube equation in terms of shock Mach
number M, and initial conditions before diaphragm rup-
ture is!

1 2’)’1 Y1 — 1]
— M2 — =
9P41[71+1 ’Yl+1

1 — (ya — 1)(1‘452 —_ 1) g_(74_1)/274]274/(74_1) (1)
(’Yl + DAy M,

where

M, = shock speed divided by sound speed @, ahead of
shock

Py = pi/p: = initial pressure ratio (>1) across diaphragm

Ay = as/a, = initial sound speed ratio across diaphragm

g = parameter accounting for tube cross-section area
change at diaphragm
v = specific heat ratio

Subscripts 4 and 1 denote initial states of driver and driven
gases, respectively.

The effect of an area change at the diaphragm can be
interpreted in terms of a constant-area shock tube having
initial diaphragm pressure ratio gPy and sound-speed ratio
Apg(re— 1727 Appropriate values of ¢ are given in the
literature, e.g., Refs. 1 and 2; g is unity for equal driver and
driven-tube areas and has a maximum value of about 2 for
infinite contraction ratio.

For given initial conditions of Py, Aa, vs, 1, and g, the
solution of Eq. (1) for M, requires an iterative procedure.
Extensive graphical results therefore have been given in
previous publications, usually in the form M, vs Py with
Aun, v, and v, as independent parameters. A large number

Received by ARS December 10, 1962. This study was done
under Contract No. AF 33(657)-8860 for the Aeronautical
Research Laboratory, Office of Aerospace Research, U. S. Air
Force.

* Assistant Head, Aerodynamic Research Department.

1 Research Mechanical Engineer.

VOL. 1, NO. 4

M 3 -2
4 e 1
M P -
T B TR SRS,
,,43[‘ =1.2
101k S—% =1.4

-+

\(DQH.G?
I \\
o2 vl vvod v nd v enpd il g k.m.

107 109 10t 102 103 104 105 lod
1/ ’2’ l/ P,
(A _ Y4 7 a1
s [ =—q% —
o T

Fig. 1 Normalized shock tube performance; applicable
for M > 3 and arhitrary v

of curves thus are required to represent shock tube perform-
ance over a range of Ay values for usual combinations of v,
and Y1.

The purpose of the present note is to point out that, for
M, exceeding about 3, the approximation of neglecting 1
and (y; — 1)/2v: compared to M2 enables Eq. (1) to be
put into a reduced form that greatly simplifies the inter-
pretation, graphical representation, and determination of
shock-tube performance. The reduced form of Eq. (1) is

Y = {1 = [(ys — 1)/ @y 2] TXV W=D (9)

where

Y = ( & )M a x = ¢/
7+ 1 (9P41)1/2 "+ 1

and
Ty = viPa/viAg?

is the initial density ratio across the diaphragm. Thus the
reduced equation contains only one independent parameter,
v4, in addition to the two variables Y and X. The variable
Y is the shock Mach number normalized in terms of the dia-
phragm pressure ratio Py. The variable X is essentially
the diaphragm density ratio I'y and therefore accounts for
the effects of both Py and 44,. ,

For practical purposes (to within a few percent accuracy),
the plot of shock-tube performance from Eq. (2) can be
simplified somewhat further without loss of generality by
plotting M./ (gPu)V? vs g1/ YTy, i.e., omitting the faectors in
Y and X involving v:. The insensitivity to 1 (in the usual
range of y;) is suggested by the limiting behavior of M,/
(gPs)"? as Ty — 0 via Ay ~> o, and as 'y = o via Py —>
. Three such plots of tube performance are shown in Fig.
1 for values of v of 1.67, 1.4, and 1.2. These curves deter-
mine M, in convenient form for arbitrary values of Py, A,
v1, and ¢g. It is emphasized that the curves apply only for
M s exceeding about 3.

All the basic aspects of ideal shock-tube performance are
made conveniently apparent by this representation. For a
given value of +i the normalized performance, ie., M,/
(gPsu)'2, depends only on the diaphragm density ratio Ii.
The most efficient operation for production of strong shocks,
i.e., maximum M, for given Py, is at low values of I'y; which
are obtained with large values of the sound-speed ratio Ay.
Some increase in performance [i.e., M,/ (gPs)V?] is obtained
with decrease in 7., but this increase becomes small at lower
values of T'y.
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The region of tailored-interface operation, where the shock %

wave reflected from the driven-tube end produces no re-
flected waves on interacting with the interface, also is shown.
For shock waves sufficiently strong that M.2 > (v, + 1)/
(v: — 1) (ie., limiting density ratio for ideal gas), tailoring
occurs at one point only on the M,/(gPu)V? vs g!7i[y curve.
The range of g1/7: Ty over which tailoring oceurs for 3 < M, <
o is quite narrow. Conditions for tailoring are summar-
ized in Fig. 2.

The use of these reduced variables simplifies the analysis
of more complex shock-tube configurations. In the case of
the buffered shock tube,® for example, similar approxima-
tions give the result that the final shock Mach number at-
tained for given initial states of the driver and driven gases
depends only on the initial driver-buffer gas density ratio.
Previous numerical results for the buffered shock tube which
show the effects of varying buffer-gas pressure and molecular
weight® can be correlated conveniently in terms of this
density ratio.
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Electromagnetic Torques Operating on
Satellites Using Snap Reactor Power
Systems

J. H. Breg*
North American Aviation Science Center,
Canoga Park, Calif.

HIT satellites that use Snap nuclear reactor systems for

auxiliary power are unique in both the size of the perma-
nent magnet carried and the amount of electric current gener-
ated while in orbit. The interaction of the electric and
magnetic fields of the satellites with the geomagnetic field
will produce torques that may affect the satellite attitude.
Tt is the purpose of this note to express these electromagnetic
torques as a function of time in order that they may be used
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Fig. 1 Coordinate system used in torque analysis

as an inhomogeneous forcing function in the dynamic attitude
control equations.

The geomagnetic field may be derived from a potential,
V(r,0,¢) expressed in powers of orbit radius and normalized
associated Legendre polynomials.! The components of the
field at the location of the satellite are

B. = dV/or (1)
By = (1/r)(0V/00) 2
B, = —(1/r sind)(dV/d¢) 3)

where 7, 8, and ¢ are conventional spherical coordinates
centered in the earth, # being measured from the North
Pole. The more terms taken in the series expansions for the
field components, the higher the degree of accuracy that
will be obtained. The magnetic moment of the satellitc
has components in the roll, pitch, and yaw directions, where
the yaw axis is parallel to the local vertical, the roll axis is in
the orbital plane and perpendicular to the yaw, and the pitch
axis forms the third axis of a right-handed Cartesian set,
permuted in the order roll, pitch, yaw (see Fig. 1). Note
that, if the orbital plane contains the line connecting the
geographic poles, the roll, yaw, and pitch components of the
satellite magnetic moment vector are, respectively, parallel
to Be, B., and B,.

The perturbing torque is the vector product of the satellite
and geomagnetic fields. If one lets v be the positive angle
measured from the positive roll axis to the tangent to the
circle, 7 = const at the satellite (see Fig. 1), and defines the
components of the satellite field as Mz, Mp, and My along
the roll, pitch, and yaw axes, then the torque components
about these axes are

Tw = My(B, cosy — Bgsiny) — MpB. 4)
Tp = MpB, — My(B, cosy — Bp siny) (5)

Ty = Mp(Bp cosy + B, siny) — Mz(B, cosy —
Bg siny)  (6)

expressed in the roll, pitch, yaw coordinate system.
Having found the components of the torque vector, it is
necessary to express the orbital radius and the angles v, 8, and

1 Johnson, F. 8., Satellite Environment Handbook (Stanford
University Press, Stanford, Calif., 1961), p. 127.



